Enhanced Fraud Miner: Credit Card Fraud Detection using Clustering Data Mining Techniques
نویسندگان
چکیده
This paper aimed to build unified pattern per customer not only represent normal behavior but also Fraud pattern that’s represented previously and confirmed as fraud transactions that’s facilitate studding fraudsters behavior. An enhancement for the proposed algorithm of Fraud Miner has been proposed. This enhancement involves introducing LINGO clustering Data mining algorithm by replacing Apriori algorithm used in Fraud Miner for Frequently Pattern creation and facilitate summarize customer previous behavior either within his Legal or Fraud transactions. Using this algorithm provide more chance for easily fraud detection as the fraudsters always behaving same as customer behaviors instead of study fraudster behavior the customer frequent behavior will be identified from his legal or previously confirmed transactions being fraud. A performance comparison with other algorithms has been carried out.
منابع مشابه
Credit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملDetecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes
With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...
متن کاملCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
متن کاملPredicting Workers’ Compensation Insurance Fraud Using SAS Enterprise Miner 5.1 and SAS Text Miner
Insurance fraud costs the property and casualty insurance industry over 25 billion dollars (USD) annually. This paper addresses workers' compensation claim fraud. A data mining approach is adopted, and issues of data preparation are discussed. The focus is on building predictive models to score an open claim for a propensity to be fraudulent. A key component to modeling is the use of textual da...
متن کامل